EMERGING TECHNOLOGIES

Portable Nuclear Reactor Program Sparks Controversy

6/28/2021
By Mandy Mayfield

Government Accountability Office illustration

The Defense Department is working to quickly procure a small, transportable nuclear reactor that could help bring energy to remote and austere environments.

However, the program has drawn criticism from nuclear nonproliferation experts for potentially causing disasters on battlefields.

The Pentagon’s Strategic Capabilities Office selected two teams in March to continue their work developing transportable nuclear microreactor prototypes as part of “Project Pele.” The effort was originally formulated in the fall of 2018 in response to language in the 2019 National Defense Authorization Act about the need to find a solution to a perennial problem: providing power to U.S. troops, said Jeff Waksman, program manager for the effort.

The office awarded BWXT Advanced Technologies, a Virginia-based nuclear components company, and X-energy, a Maryland-based nuclear reactor and fuel engineering company, $27.9 million and $28.7 million for the project, respectively.

Prior to the award, both companies received contracts ranging from approximately $13 million to $15 million in 2020 for work on preliminary engineering designs of the microreactors.

Nuclear power is “orders of magnitude more energy dense than any other known technology,” Waksman told National Defense. “That allows the possibility to provide resilient power for years and years, without needing to refuel. … Refueling can be a real burden in remote areas.”

The Strategic Capabilities Office sees three main applications for the initial capability, Waksman noted.

“When we talk about the low hanging fruit for early applications for this, [the first] is remote locations — think the Arctic where there is a need for large amounts of power — but it’s hard to get power there now,” he said.

Another is what is referred to as the “strategic support area,’” which provides power for equipment that is mission essential, such as radar systems, he said.

The third key application for a portable reactor is its ability to aid in humanitarian assistance and disaster relief, Waksman said.

Over the past few years there have been a number of incidents throughout the United States including hurricanes and cold snaps that have caused massive power outages over large areas.

“One of these reactors is not going to power Texas or California or Puerto Rico, but what it can power is a crucial single location when the whole grid is down,” Waksman said. “This can power a hospital or it can power a refugee center.”

The reactor is being designed to deliver 1 to 5 megawatts of electrical power for at least three years of operation, according to the SCO.

The concept for the reactors began with the requirement that they would run off of tristructural isotropic particle fuel, or TRISO, Waksman said.

Each TRISO particle is made up of a uranium, carbon and oxygen fuel kernel which is encapsulated by three layers of carbon- and ceramic-based materials that prevent the release of radioactive products, according to the Department of Energy.

“TRISO fuel was originally developed by the Department of Energy to be a meltdown-proof fuel,” Waksman noted. “They wanted a fuel that could withstand very high temperatures without melting, and it has been tested to 1,800 Celsius, which is hotter than the melting point of steel.”

The fuel has two secondary benefits for the Pentagon, the first being its resiliency to proliferation which can help deter the reactors from being targets for bombings or attacks. “We believe that the encapsulation of the fuel makes it very unattractive for those purposes,” Waksman said.

The other benefit stems from its encapsulated deficient product gases, he said.

That’s “the stuff that actually harms people in, say, Fukushima or Chernobyl,” he said, referring to previous nuclear disasters in Japan and the former Soviet Union. “Rather than flowing through the core, it’s wrapped up in millions of these little tiny, tiny pellets, which means that even if somehow someone was able to crack open this reactor ... you’re not going to release all of the gases that are inside,” he said.

These benefits are important as there could be hesitancy to deploy the reactors overseas if there are significant radiological risks to troops at an installation point, Waksman noted. “So, we have made safety our absolute No. 1 priority on this program,” he added.

While the office is making efforts to ensure the reactors are as durable as possible, some critics are still concerned about the possibility of an enemy missile attack.

These points are made in the report, “Proposed U.S. Army Mobile Nuclear Reactors: Costs and Risks Outweigh Benefits,” authored by Alan Kuperman, coordinator of the Nuclear Proliferation Prevention Project at the Lyndon B. Johnson School of Public Affairs at the University of Texas at Austin.

The office’s microreactor effort could help facilitate a “radioactive Pearl Harbor or 9/11 attack on U.S. troops,” said Kuperman.

“The Army’s mobile reactor program, which was never requested by the Pentagon but rather by nuclear industry cheerleaders in Congress, is precisely how disasters happen,” he said in the report, which was released in April. “Such enormous risks cannot be justified since we already have safer energy alternatives that are also cheaper by an order of magnitude than nuclear.”

Another issue highlighted in the report is the possibility of reactors being captured during an enemy attack.

Kuperman warns that if soldiers were forced to abandon a reactor under attack, an adversary could potentially come into possession of several hundred pounds of highly radioactive waste.

Waksman said the SCO is thinking through any potential disaster the reactor could face.

“We have to study what happens if there’s sabotage, if someone tries a terror attack on the reactor,” he said. “We have to study if there’s an earthquake, a volcano, a partial flood, a full flood. What happens if the truck is driving on the road and slides down an embankment and becomes partially lodged in a muddy river?”

As for radioactive waste, Waksman said: “We want to emphasize that the amount of nuclear waste that this will produce is very tiny,”

Waksman said. “The amount of waste that we’re going to be producing here … is what we would call basically negligible.”

The plan currently is to keep the waste safely at Idaho National Laboratory, alongside a number of other reactors already stored there, he said.

Due to the rapid timeline for the program — with a final design review slated for 2022 and then a downselect to one company’s prototype — the teams are working with a number of materials and concepts already in use today.

“We are not trying to create the most advanced nuclear reactor possible because that’s just not what SCO does,” Waksman said. “SCO is a rapid prototyping organization.”

The follow-on effort for Project Pele — informally dubbed “Son of Pele” — will be a more advanced reactor. But for the first iteration, “we simply need a mobile reactor producing 1 to 5 megawatts of power” that can be ready to go in 2024, he said.

Due to security requirements, BWXT declined to answer questions about the design of its prototype offering, but a spokesperson said the company is currently pursuing a number of opportunities within the Defense Department that leverage its work with nuclear engineering.

“We’ve restarted our TRISO nuclear fuel production line and nabbed two contracts, we’ve been developing new additive manufacturing technologies for high-temperature alloys and refractory metals, and we’re leading a different $106 million microreactor development project for the Department of Energy,” said Jud Simmons, director of media and public relations for BWXT. “Although these technologies are focused on the commercial advanced reactor market, there could be some military tie-ins down the road.”

X-energy did not respond to a request for an interview.

One major hurdle the SCO and vendors will have to overcome is an environmental analysis, which the program is subject to under the National Environmental Policy Act, or NEPA. The office will have to formulate a report detailing Project Pele’s uranium management “from cradle to grave and explain everywhere it’s going, everywhere it might be and what any potential risks are,” Waksman said.

Another design issue project managers and vendors will have to consider is the portability of the reactor.

Although the microreactor will be transportable onboard a C-17, the first iteration of Project Pele will not be flown due to the “political implications” of flying radioactive material, Waksman said.

“We just want to make sure that from a size and weight and weight distribution [perspective], that it could be flown if we chose to. But that’s a policy question,” Waksman said.

For now, the reactor will be transported via truck. The SCO has been heavily engaged with both the Nuclear Regulatory Commission and the Department of Transportation as well as the National Nuclear Security Administration to obtain regulatory approval to drive the reactor on U.S. roads, he said.

“Those are very, very strict requirements because there cannot be a risk to a member of the public who walks up to something on a highway,” he said.

Meanwhile, the Department of Energy’s Argonne National Laboratory is examining how nuclear microreactors efforts such as Project Pele can be transported.

The lab is currently exploring the types of infrastructure needed to deploy nuclear microreactors, said Andrew Breshears, principal nuclear chemist at the lab.

“Where would nuclear reactors, and especially microreactors in this case, need to be deployed in order to best serve the community and the nation?” he asked in an interview.

Argonne is also developing advanced materials that can better withstand the stress and strain that high temperature, high efficiency reactors experience.

The lab established an advanced materials division which uses computational and experimental methods to investigate and test new materials. The division is also exploring how to produce such materials on a larger scale, he noted.

That includes special coatings, Breshears added.

“We have what’s known as the metal facility, which does testing of parts that we would expect to be in a metal-cooled, fast reactor loop, and … [are examining] how those materials withstand the stress and strain under ... those conditions,” he said.

The main thrust of the lab’s efforts is to help the United States reach its goal of generating carbon-free electricity by 2035 and net zero carbon emissions by 2050, Breshears said.

Topics: Energy, Defense Department

Comments (15)

Re: Portable Nuclear Reactor Program Sparks Controversy

Could a terrorist force a meltdown in a strategic location?

Albert Dickey at 2:17 PM
Re: Portable Nuclear Reactor Program Sparks Controversy

Its about time America shook off the knee-jerk fear of all things nuclear resulting form 1970's Hollywood propaganda movies and the international left's desire to destroy free markets by removing access to sufficient affordable energy.
This is essential prototyping work to reach a future where all those posturing peacocks now driving electric cars can actually find enough power to recharge them --Today, its almost all from fossil fuel burning power plants--many coal burning. This is especially so at night when there is none of their vaunted, but paltry solar power.
Small transportable reactors also represent a great tactical power source and of course a necessary expense because tools in military leadership (politicians with stars on their collar) are trying to force all military vehicles to become battery powered. None of these crusaders for mythic carbon neutral power have addressed the question: Where ya gonna recharge your tank on a shattered battlefield?

Chuck Murphy at 10:18 AM
Re: Portable Nuclear Reactor Program Sparks Controversy

Th e US Navy has safely used nuclear reactors at sea. Neither Chernobyl event nor 3 Mile Island event reactors are appropriate models for the micro-reactor design. Using an entirely different principle of reactor fuel and cooling, the newest design reactor is safe. Nuclear engineers and physicists have learned a great deal since 1945. The F-35 has no resemblance to the Wright flyer of 1903, and the newest designed reactor bears no resemblance to former reactor designs. Does anyone recall the dangerous periodic steam explosions from the early steam locomotives? Technology moves on and we cannot compare apples and oranges. The nuclear reactor new designs are environmentally clean, and the logistics in a military setting of just plug and play is fantastic. The only logistics is to set the nuclear reactor down and plug electrical circuits in to it. No gasoline or diesel fuel to resupply and no gas or diesel storage tanks exploding at the military site. No power failures because the fuel runs dry. Whether for strict military use or for civilian emergency power restoration, these research designs must be perfected and added to our inventory.

Col. Bruce Altschuler USAF (ret.) at 1:29 PM
Re: Portable Nuclear Reactor Program Sparks Controversy

I believe that this type if small tactical nuclear power source would be very useful. It would be even better if the half life of each radioactive atom could be calculated and then what spent components would be left after its use is done. Would need to know how atoms are constructed including the small photons which make each quark up. Including all the forces which really help make all matter up. This is not known by very many people at all. After all its just a theory.

Eric L Kopchia at 2:19 AM
Re: Portable Nuclear Reactor Program Sparks Controversy

I dont think that's right. Thorium only becomes radioactive when neutrons are fired at it – it is “fertile” not “fissile” – so it cannot itself be weaponised. Although the thorium cycle produces uranium-233, the concentrations are too low to make a bomb. The cycle also produces a significant amount of U-232. Uranium-232 is a strong gamma emitter which means the mix of uranium coming out of a thorium generator, if anyone tried to extract it, will be very hard to handle and ill-suited for weaponry. Another key point: there is no need to enrich thorium to create a fissile fuel, whereas for a uranium reactor, the natural uranium needs be enriched before it can be used. It is ultimately the enrichment process which causes nuclear proliferation problems.

MD at 9:30 AM
Re: Portable Nuclear Reactor Program Sparks Controversy

That the Defense Department didn't request this is either irrelevant, or an interesting tell about Wokeness infestation and Conflict of Interest in military planning and procurement.
The companies working on this are trying to solve the energy crisis problem. And we do have an energy crisis, regardless of whether you think it's a mere market fluctuation, or deliberate sabotage by the New Green Wave.

Michael Houst at 10:57 AM
Re: Portable Nuclear Reactor Program Sparks Controversy

The heat rejection equipment (cooling towers or radiators) will have an enormous footprint, and it will be hard to conceal. This effort reminds me of an old military engineer joke - the difference between mechanical and civil engineers is that mechanical engineers design weapons and civil (and now nuclear) engineers design targets.

Michael Rocchetti at 10:06 AM
Re: Portable Nuclear Reactor Program Sparks Controversy

Forget that plan. California needs this now. Please send.

Michael Van Damme at 7:31 PM
Re: Portable Nuclear Reactor Program Sparks Controversy

The Army tried developing portable reactors in the 1960s, but stopped after the SL-1 accident. All three operators died when a control rod was pulled too far out of the reactor. The accident caused the SL-1 design to be abandoned and future reactors were designed so that a single control rod removal would not have the ability to cause an accident. The program was halted due to financial pressures during the Vietnam war.

Patrick Harris at 12:00 PM
Re: Portable Nuclear Reactor Program Sparks Controversy

I'm still waiting on nuclear power plant ships close coupled with ship based desalination plants, deployable in tandem. Make water while the sun shines or the wind blows, power when needed. Why let Russia have all the fun. Besides, California, Oregon, Washington, Texas, Louisiana, Florida, Puerto Rico, and Hawaii there would be plenty of international drought/disaster assignments for a power/water combo.

Paul Villella at 5:59 AM
Re: Portable Nuclear Reactor Program Sparks Controversy

I believe that this is Terrific, if appropriate safeguards are utilized.
Phil Spector

Phil

Philip Spector at 2:42 PM
Re: Portable Nuclear Reactor Program Sparks Controversy

Even if it was the size of an M1 Abrams, it would barely power a half dozen street lamps.

RepublicansdestoryingAmerica at 3:38 PM
Re: Portable Nuclear Reactor Program Sparks Controversy

The TRISO fuel pellets give away the design. It's probably a generation IV pebble bed reactor. They truly produce almost zero radioactive waste, and they always fail safe. They can even be designed as breeder reactors to convert nonfissile isotopes into fissile isotopes, and even burn old waste fuel rods down to almost nonradioactive waste. Current state of the art commercial nuclear reactors are Generation II technology dating back to the 1950's. Who still has a rotary phone on a party line?

SGTchemistry at 7:07 PM
Re: Portable Nuclear Reactor Program Sparks Controversy

Why is there no mention of thorium molten salt reactors???

SW at 6:08 PM
Re: Portable Nuclear Reactor Program Sparks Controversy

The don't mention Thorium since you can use a Thorium reactor to make nuclear weapons. Nuclear reactors started to make material for weapons. Thorium is more abundant than Uranium about 3x more abundant but all previous reactor designs have been based on U / Pu.


Tom at 9:47 PM
Retype the CAPTCHA code from the image
Change the CAPTCHA codeSpeak the CAPTCHA code
 
Please enter the text displayed in the image.